Critical Self-Organized Self-Sustained Oscillations in Large Regulatory Networks: Towards Understanding the Gene Expression Initiation

نویسنده

  • Simon Rosenfeld
چکیده

In this paper, a new model of self-organized criticality is introduced. This model, called the gene expression paradigm, is motivated by the problem of gene expression initiation in the newly-born daughter cells after mitosis. The model is fundamentally different in dynamics and properties from the well known sand-pile paradigm. Simulation experiments demonstrate that a critical total number of proteins exists below which transcription is impossible. Above this critical threshold, the system enters the regime of self-sustained oscillations with standard deviations and periods proportional to the genes' complexities with probability one. The borderline between these two regimes is very sharp. Importantly, such a self-organization emerges without any deterministic feedback loops or external supervision, and is a result of completely random redistribution of proteins between inactive genes. Given the size of the genome, the domain of self-organized oscillatory motion is also limited by the genes' maximal complexities. Below the critical complexity, all the regimes of self-organized oscillations are self-similar and largely independent of the genes' complexities. Above the level of critical complexity, the whole-genome transcription is impossible. Again, the borderline between the domains of oscillations and quiescence is very sharp. The gene expression paradigm is an example of cellular automata with the domain of application potentially far beyond its biological context. The model seems to be simple enough for staging an experiment for verification of its remarkable properties.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sustained Activity in Hierarchical Modular Neural Networks: Self-Organized Criticality and Oscillations

Cerebral cortical brain networks possess a number of conspicuous features of structure and dynamics. First, these networks have an intricate, non-random organization. In particular, they are structured in a hierarchical modular fashion, from large-scale regions of the whole brain, via cortical areas and area subcompartments organized as structural and functional maps to cortical columns, and fi...

متن کامل

Self-organized criticality in neural network models

Information processing by a network of dynamical elements is a delicate matter: Avalanches of activity can die out if the network is not connected enough or if the elements are not sensitive enough; on the other hand, activity avalanches can grow and spread over the entire network and override information processing as observed in epilepsy. Therefore, it has long been argued that neural network...

متن کامل

Stem cell decision making and critical-like exploratory networks.

A sound theoretical or conceptual model of gene regulatory processes that control stem cell fate is still lacking, compromising our ability to manipulate stem cells for therapeutic benefit. The complexity of the regulatory and signaling pathways limits development of useful, predictive models that employ solely reductionist methods using molecular components. However, there is clear evidence fr...

متن کامل

Self-organization of heterogeneous topology and symmetry breaking in networks with adaptive thresholds and rewiring

We study an evolutionary algorithm that locally adapts thresholds and wiring in Random Threshold Networks, based on measurements of a dynamical order parameter. If a node is active, with probability p an existing link is deleted, with probability 1− p the node’s threshold is increased, if it is frozen, with probability p it acquires a new link, with probability 1 − p the node’s threshold is dec...

متن کامل

0 Topological Evolution of Dynamical Networks : Global Criticality from Local Dynamical Rules

We evolve network topology of an asymmetrically connected threshold network by a simple local rewiring rule: quiet nodes grow links, active nodes lose links. This leads to convergence of the average connectivity of the network towards the critical value Kc = 2 in the limit of large system size N . How this principle could generate self-organization in natural complex systems is discussed for tw...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2011